
Package index
-
initial_split()initial_time_split()training()testing()group_initial_split() - Simple Training/Test Set Splitting
-
initial_validation_split()initial_validation_time_split()group_initial_validation_split()training(<initial_validation_split>)testing(<initial_validation_split>)validation() - Create an Initial Train/Validation/Test Split
-
validation_set()analysis(<val_split>)assessment(<val_split>)training(<val_split>)validation(<val_split>)testing(<val_split>) - Create a Validation Split for Tuning
-
bootstraps() - Bootstrap Sampling
-
group_bootstraps() - Group Bootstraps
-
vfold_cv() - V-Fold Cross-Validation
-
group_vfold_cv() - Group V-Fold Cross-Validation
-
mc_cv() - Monte Carlo Cross-Validation
-
group_mc_cv() - Group Monte Carlo Cross-Validation
-
clustering_cv() - Cluster Cross-Validation
-
nested_cv() - Nested or Double Resampling
-
loo_cv() - Leave-One-Out Cross-Validation
-
rolling_origin()superseded - Rolling Origin Forecast Resampling
-
sliding_window()sliding_index()sliding_period() - Time-based Resampling
-
apparent() - Sampling for the Apparent Error Rate
-
permutations() - Permutation sampling
-
manual_rset() - Manual resampling
-
int_pctl()int_t()int_bca() - Bootstrap confidence intervals
-
reg_intervals() - A convenience function for confidence intervals with linear-ish parametric models
-
.get_fingerprint() - Obtain a identifier for the resamples
-
as.data.frame(<rsplit>)analysis()assessment() - Convert an
rsplitobject to a data frame
-
add_resample_id() - Augment a data set with resampling identifiers
-
complement() - Determine the Assessment Samples
-
form_pred() - Extract Predictor Names from Formula or Terms
-
get_rsplit() - Retrieve individual rsplits objects from an rset
-
labels(<rset>)labels(<vfold_cv>) - Find Labels from rset Object
-
labels(<rsplit>) - Find Labels from rsplit Object
-
make_splits() - Constructors for split objects
-
make_strata() - Create or Modify Stratification Variables
-
populate() - Add Assessment Indices
-
reshuffle_rset() - "Reshuffle" an rset to re-generate a new rset with the same parameters
-
reverse_splits() - Reverse the analysis and assessment sets
-
rsample2caret()caret2rsample() - Convert Resampling Objects to Other Formats
-
rset_reconstruct() - Extending rsample with new rset subclasses
-
tidy(<rsplit>)tidy(<rset>)tidy(<vfold_cv>)tidy(<nested_cv>) - Tidy Resampling Object
-
rsample-dplyr - Compatibility with dplyr