For a data set, add_resample_id()
will add at least one new column that
identifies which resample that the data came from. In most cases, a single
column is added but for some resampling methods, two or more are added.
Examples
library(dplyr)
#>
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#>
#> filter, lag
#> The following objects are masked from ‘package:base’:
#>
#> intersect, setdiff, setequal, union
set.seed(363)
car_folds <- vfold_cv(mtcars, repeats = 3)
analysis(car_folds$splits[[1]]) %>%
add_resample_id(car_folds$splits[[1]]) %>%
head()
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
#> id id2
#> Mazda RX4 Repeat1 Fold01
#> Mazda RX4 Wag Repeat1 Fold01
#> Datsun 710 Repeat1 Fold01
#> Hornet 4 Drive Repeat1 Fold01
#> Hornet Sportabout Repeat1 Fold01
#> Valiant Repeat1 Fold01
car_bt <- bootstraps(mtcars)
analysis(car_bt$splits[[1]]) %>%
add_resample_id(car_bt$splits[[1]]) %>%
head()
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Toyota Corona...1 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Mazda RX4...2 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Chrysler Imperial...3 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Volvo 142E...4 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#> Chrysler Imperial...5 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Volvo 142E...6 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#> id
#> Toyota Corona...1 Bootstrap01
#> Mazda RX4...2 Bootstrap01
#> Chrysler Imperial...3 Bootstrap01
#> Volvo 142E...4 Bootstrap01
#> Chrysler Imperial...5 Bootstrap01
#> Volvo 142E...6 Bootstrap01